Visualizing Gas Permeation Pathways Through Proteins at Sub-Angstrom Resolution water oxygen

Emad Tajkhorshid

Computational Structural Biology and Molecular Biophysics www.csbmb.beckman.illinois.edu

Department of Biochemistry Center for Biophysics and Computational Biology Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign

Molecular Dynamics Simulations

nobelprize.org/nobel_prizes/chemistry/laureates/2003/animations.html

Solving the Newtonian equations of motion for all particles at every time step

Major limitations:

Time scale / sampling

Force field approximations

Major advantages:

- Providing a dynamical description
- Unparalleled spatial and temporal resolutions, simultaneously

In situ Molecular Dynamics Simulations

Atom count: 100-500k ~10 ns/day on 128-1024 processors 100-500 ns for each system

Fast Growth of Computational Power

HP 735 cluster 12 processors (1993)

SGI Origin 2000 128 processors (1997)

PSC LeMieux AlphaServer SC 3000 processors (2002)

Ranger/Kraken ~60,000 processors (2007)

Blue Waters (UIUC) 200,000+ processors (2013)

Anton/DESHAW/PSC 512 processors (2010)

Capturing Biology at sub-Å Resolution

IF↔OF transition in an MFS Transporter in Membrane

Y. Wang, J. Cohen, W. Boron, K. Schulten, and E. Tajkhorshid, *J. Struct. Biol.*, 2007. Y. Wang, S. Shaikh, and E. Tajkhorshid, **Physiology**, 2010.

Lipid/Water Partition Coefficients

Simulation

CO ₂ in POPE	3.50
CO ₂ in POPC	2.74
$O_{2(P)}$ in POPC	4.04
O _{2(N)} in POPC	3.46
O _{2(P)} in POPE	4.73
O _{2(N)} in POPE	5.79

Experiment

CO₂

Octanol: 1.3 Hexadecane: 1.5 Olive oil: 1.7

O2

Liposome: 3.9

Gas Diffusion Inside the Lipid Bilayer

Aquporin Water/Gas Channels

Why Tetramers?

Implicit Ligand Sampling

 $\mathcal{W}(\mathbf{r}) = -k_{\rm B}T \ln \left[\frac{\rho(\mathbf{r})}{\rho_{\rm o}}\right]$

 $F(z) = -RT \ln \sum_{x,y=0}^{L_x, L_y} \frac{e^{-F(x,y,z)/RT}}{L_x L_y}$

Cohen, et al., 2006; Wang, et al., 2007

Oxido-reductase and Proton Pump

Rapid O₂ Permeation via the Hydrophobic Channel in Cytochrome C Oxidase

O₂ Pathway in Cytochrome C Oxidase

Implicit ligand sampling

Explicit O₂ simulation

Reddish solid: $\Delta\Delta G$ map of ~ -3.5 kcal/mol ; Reddish wireframe: $\Delta\Delta G$ map of ~ -3.0 kcal/mol

Observed Xenon binding in CcO ba₃ crystal structures

All located along the hydrophobic channel

Luna VM, Chen Y., Fee JA and Stout CD (2008) Biochemistry, 47, 4657-4665 (PDB entry 3BVD)

Luna VM, Fee JA, Deniz AA and Stout CD (2012) Biochemistry, 51, 4669-4676

Simulating Membrane Gas Transport

Identical total areas

Calculating permeation rate in MD simulations

AQP1 AQP4 CO_2 O_2 NO

Gas Transport through Aquaporins

A Role for the Central Pore!

Gas Transport through Aquaporins

SYSTEM	TOTAL (100x100 A²)	WATER PORES (4)	CENTRAL PORE (1)
Equi POPE-CO ₂	3	N/A	N/A
Equi POPC-CO ₂	5	N/A	N/A
Equi POPC-O _{2(P)}	16	N/A	N/A
Equi POPE-O _{2(P)}	11	N/A	N/A
Press POPE-CO ₂	168	N/A	N/A
Press POPC-CO ₂	160	N/A	N/A
Press POPE-O _{2(P)}	310	N/A	N/A
Press POPC-O _{2(P)}	208	N/A	N/A
Press POPE-AQP1-CO ₂	76	6	4
Press POPE-AQP1-O _{2(P)}	79	1	6

Free Energy Profiles for O₂ and CO₂

Y. Wang, J. Cohen, W. Boron, K. Schulten, and E. Tajkhorshid, *J. Struct. Biol.*, 2007. Y. Wang, S. Shaikh, and E. Tajkhorshid, *Physiology*, 2010.

Major Barrier Generated by Structured Water

Barrier identified and characterized through combining the implicit and explicit approaches

Y. Wang, J. Cohen, W. Boron, K. Schulten, and E. Tajkhorshid, *J. Struct. Biol.*, 2007.Y. Wang, S. Shaikh, and E. Tajkhorshid, *Physiology*, 2010.

NO[•] Permeation Through AQP4

Y. Wang, and E. Tajkhorshid, *Proteins*, 2010.

NO[•] Permeation Through AQP4

50 ns equilibrium simulation

Y. Wang, and E. Tajkhorshid, *Proteins*, 2010.

Comparison of the Central Pore in AQP1 and AQP4

Gas Transport through Aquaporins

✦ Computational evidence for gas transport through a membrane channel

✦ Central Pore in AQPs is an optimal pathway for gas diffusion

Shared by other oligomeric membrane proteins?

✦ AQPs can be physiologically relevant gas channels in lipid bilayer with low gas permeability

✦ We can simulate very efficiently the process of gas diffusion, but we rely heavily on reliable initial configurations of lipids/ protein

Free Energy of O₂ Permeation Across Charged Lipid Bilayers

DOPS / Na⁺

Lipid Phase and Gas Permeation

Liquid phase (30 ns) Gel phase (30 ns)

Highly Mobile Membrane Mimetic (HMMM) Model for Membrane Proteins and Phenomena

Ohkubo, Pogorelov, Arcario, Christensen, Tajkhorshid, *Biophysical J. May 2012*.

Spontaneous and Rapid Formation of a Bilayer

Zenmei Ohkubo

60 x 60 x 120 Å DVPSs at 3 x 3 x 6 grid points (22 ns)

HMMM- Preserving the "Face" of the Lipid Bilayer

Perfect match in the membrane profile particularly in the head group region

Critical for proper description of lipid protein interactions

Spontaneous Insertion of FVII-GLA

Spontaneous Membrane Binding (*n* = 10)

HMMM

ANALASIA ANA

Quantitative Characterization and Optimization of HMMM

Quantitative Characterization and Optimization of HMMM PMF of Amino Acid Insertion ARG (full-atom >30 ns) ARG 1 (HMMM 5 ns) ARG 2 10 Free Energy (kcal/mol) Free energy (kcal/mol) 0 5 0 -5 ALA 1 (HMMM 5 ns) Arginine ALA 2 Alanine ALA (full-atom 30 ns) -10 – 0 20 30 30 10 ່ດ 10 20 Distance from bilayer center (Å) Distance from center of bilayer (Å) 20 ASP (full-atom > 30 ns) ASP (HMMM-JVS 3 ns) ASP (HMMM-DCLE 5 ns) 15 0 Energy (kcal/mol) Free energy (kcal/mol) -2 10 **Solvent optimization** Free Isoleucine 5 ILE 1 (HMMM 3 ns) **Aspartate** ILE 2 ILE (full-atom > 30 ns) 0 -6 30 0 10 20 30 'n 10 20 Distance from bilayer center (Å) Distance from center of bilayer (Å)

* Black lines: Full membrane data from Biophys. J. 94, 3393, 2008.

Highly Mobile Membrane Mimetic Model (HMMM)

Computational Structural Biology and Molecular Biophysics Group (CSBMB)

csbmb.beckman.illinois.edu

Collaborators:

- Walter Boron
- Raif Musa-Aziz
- Xue Qin
- Robert Gennis

Transporter Team

Zhijian Huang Jing Li Giray Enkavi Mahmoud Moradi Wei Han

Saher Shaikh Paween Mahin Po-Chao Wen Wenxun Gan

HMMM Team Zenmei Ohkubo Mark Arcario Joshua Vermaas

Taras Pogorelov Javier Baylon

R01-GM086749U54-GM087519R01-GM101048P41-GM104601